An ROR�� polymorphism indicated INCB-018424 a relationship to bipolar disorder [120]. It will be of future importance to clarify the involvement of altered melatonin signaling in ROR�� and ROR�� variants.5. Consequences of Melatonin DeficiencyWith regard to melatonin’s orchestrating role [1�C3, 32], a plethora of effects can be expected to result from its deficiency. The consequences are not only evident in the CNS but extend to numerous other organs. In part, they are related to disturbances of the circadian oscillator system, but additional defects of different nature may also arise.In the CNS, membrane and nuclear receptors as well as other, poorly investigated putative melatonin binding sites are widely distributed. However, the functional significance is only clear in a few aspects.
The most frequently studied role of melatonin concerns the SCN. In mammals including the human, melatonin released from the pineal gland is notably both an output factor steered by the SCN, via a known neuronal pathway and an input factor feeding back to the SCN. These aspects, and especially the roles of melatonin receptors in this hypothalamic structure, have been frequently reviewed, but mostly in relation to the control of the circadian pacemaker [105, 121�C124]. A specific effect of melatonin at the SCN is related to sleep. Of course, this action is intertwined with the phase control of the master clock but can be discussed separately, in particular, with regard to sleep initiation. The onset of sleep is favored by MT1-dependent actions at the SCN that are further mediated to the hypothalamic sleep switch, a structure that responds in an on-off mode.
On the basis of mutual inhibition, it alternately activates either wake-related neuronal downstream pathways that involve locus coeruleus, dorsal raphe nucleus, and tuberomammillary nucleus or, under the influence of melatonin, sleep-related pathways via the ventrolateral preoptic nucleus [125, 126]. However, other brain structures, in which melatonergic receptors are also expressed, are additionally involved. For instance, the thalamus contributes to the soporific effects of melatonin by promoting spindle formation, which is characteristic for the transition from stage 2 sleep to deeper sleep stages and requires a thalamocortical interplay [33, 34, 127].
Although sleep Batimastat temporally coincides in humans with high nocturnal melatonin levels, persistent effects of melatonin on sleep maintenance are less evident. Nevertheless, low nocturnal melatonin is, independently of its specific causes, generally associated with sleep difficulties [65, 128�C131].Elderly insomniacs exhibit strongly decreased levels and rhythm amplitudes of the excretion product, 6-sulfatoxymelatonin, compared to individuals of same age without sleeping difficulties [128], but this phenomenon is not restricted to individuals of advanced age [3].