Mol Microbiol 2005, 56:309–322 PubMedCrossRef 56 Muhammadi Ahmed

Mol Microbiol 2005, 56:309–322.PubMedCrossRef 56. Muhammadi Ahmed N: Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007, 8:191–202.CrossRef 57. Konyecsni WM, Deretic V: DNA sequence and expression of algP and algQ , components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa : algP contains multiple direct repeats. J Bacteriol 1990, 172:2511–2520.PubMed 58. Remminghorst U, Rehm BHA: In vitro alginate polymerization

and the functional role of Alg8 in alginate WZB117 production by Pseudomonas aeruginosa . Appl SHP099 nmr Environ Microbiol 2006, 72:298–305.PubMedCrossRef 59. Oglesby LL, Sumita J, Ohman DE: Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 2008, 154:1605–1615.PubMedCrossRef 60. Franklin MJ, Ohman DE: Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is requried for alginate acetylation. J Bacteriol 1993, 175:5057–5065.PubMed 61. Wilhelm S, Tommassen J, Jaeger K: A novel

lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa buy GDC-0449 . J Bacteriol 1999, 181:6977–6986.PubMed 62. Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger K: The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 2007, 189:6695–6703.PubMedCrossRef 63. Davey ME, Caizza NC, O’Toole GA: Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 2003, 185:1027–1036.PubMedCrossRef 64. Soberón-Chávez G, Lépine F, Déziel E: Production of rhamnolipids by

Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2005, 68:718–725.PubMedCrossRef 65. Pham TH, Webb JS, Rehm BHA: The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 2004, 150:3405–3413.PubMedCrossRef 66. de Smet MJ, Eggink G, Witholt B, Kingma J, Wyngerg H: Characterization of intracellular PD184352 (CI-1040) inclusions formed by Pseudomonas oleovorans during growth on Octane. J Bacteriol 1983, 154:870–878.PubMed 67. O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson ADW: Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 2005, 71:4380–4387.PubMedCrossRef 68. Prieto MA, Bühler B, Jung K, Witholt B, Kessler B: PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 1999, 181:858–868.PubMed 69. Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey A: PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo . Nat Biotechnol 1997, 15:63–67.PubMedCrossRef 70.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>