\n\nResults. – Based on RT-PCR of 13 AQPs examined, AQP1, 3, 4, 5 and 11 were expressed in human gastric cancers
or normal gastric tissues, and AQP3, 4 and 5 exhibited differential expression between human gastric carcinomas and corresponding normal tissues, which was confirmed by Western blot analyses. lmmunohistochemical assay showed that AQP4 protein was expressed mainly in the membrane 3-deazaneplanocin A order of parietal cell and chief cell in the normal gastric mucosa, and absent in carcinoma tissues. AQP3 and AQP5 were detected remarkably stronger in the carcinoma tissues than that in normal mucosa by immunofluorescence. AQP3 expression in cases with undifferentiated tumor was more than that in cases with well-differentiated tumor. Both AQP3 and AQP5 expression were associated with lymph node C59 molecular weight metastasis and lymphovascular invasion in patients.\n\nConclusions. – These findings of differential expressions of AQPs and their correlation with clinicopathologic characteristics implicated AQPs
might play a role in human gastric carcinogenesis. (C) 2009 Elsevier Masson SAS. All rights reserved.”
“Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7 alpha, 12 alpha-dihydroxy-5a-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation
Galardin concentration markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1 h exposure. After 2 h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15 alpha-hydroxyprogesterone (15 alpha-P) concentrations decreased after prolonged 3kACA exposure (at least 24 h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.