It is conceivable that the modified avidin coating protocol using

It is conceivable that the modified avidin coating protocol using citrate buffer altered the charge selleck chemicals llc distribution at the steric layer, thus augmenting the negative surface charge of avidin-coated SPIONs. With the introduction of the negatively charged DPPG into the lipid mixture, charge repulsion may have resulted

in less tight association of the lipid layer with the avidin-coated Fe3O4 surface. Further assessment of the nanoassembly using AZD2014 high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy could provide additional experimental support for this hypothesis. Nevertheless, it is relevant to emphasize that DLS measurements are performed in the presence of a liquid suspension vehicle (e.g., citrate buffer) and determine hydrodynamic particle size distributions. HRTEM requires dry samples and may result in different quantitative size information due to the absence of a surface-associated hydration layer. The incorporation of a 50% molar ratio of DPPG into the lipid layer effectively augmented the negative surface charge of the lipid coat from -5.0 [12] to -19.1 mV. The enhanced negative charge associated with the nanoparticle surface is expected to increase colloidal stability

of the suspension. Furthermore, it is predicted that this favorable zeta potential reduces surface adsorption of selleck serum components such as proteins and lipoproteins [25]. Ultimately, these improved physicochemical properties of lipid-coated

SPIONs may significantly increase biological circulation time after systemic administration allowing more effective delivery of therapeutic payload to desired target cells. Magnetically induced hyperthermia The objective of immobilizing a phospholipid layer onto the surface of SPIONs was to fabricate a thermoreponsive nanoassembly that facilitates stimulus-induced release of a lipid-encapsulated payload following exposure to a localized alternating magnetic field. Heating behavior of uncoated and lipid-coated SPIONs was first assessed in the MFG-1000, which represents a user-friendly commercial device for the assessment of hyperthermia up to 7.0 mT at O-methylated flavonoid 1.0 MHz. It allows simple measurements using 200-μL PCR tubes or glass slides. However, this device has limited suitability for cell-based experiments and cannot be used for preclinical animal experiments. Therefore, it was of interest to compare heating behaviors of these SPIONs in the MFG-1000 with results from an experimental MHS built in our laboratory that was designed to explore the magnetically induced hyperthermia effect on biological systems, including adherent cell lines and small animals such as mice and rats. Figure 2 compares time-dependent temperature profiles recorded upon exposure of lipid-coated SPIONs at a concentration of 0.02 mg/mL in citrate buffer, pH 7.4, to a 7-mT magnetic field alternating at 1.0 MHz (MFG-1000) and a 16.6-mT magnetic field at 13.6 MHz (MHS).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>