Our study shows that the short TCF7L2 mRNA variant in subcutaneou

Our study shows that the short TCF7L2 mRNA variant in subcutaneous fat is regulated by weight loss and is associated with hyperglycemia and impaired insulin action in adipose

tissue. Diabetes 61:2807-2813, 2012″
“Pluripotent stem cells from domesticated animals have potential applications in transgenic breeding. Here, we describe induced pluripotent stem (iPS) cells derived from bovine fetal fibroblasts by lentiviral transduction of Oct4, Sox2, Klf4 and c-Myc defined-factor fusion proteins. Bovine iPS cells showed typical colony morphology, normal karyotypes, stained positively for alkaline phosphatase (AP) and Selleck ERK inhibitor expressed Oct4, Nanog and SSEA1. The CpG in the promoter regions of Oct4 and Nanog were highly unmethylated in bovine iPS cells compared to the fibroblasts. The cells were able to differentiate into cell types of all three germ layers in vitro and in vivo. In addition, these cells were induced into female germ cells under defined AG-881 clinical trial culture conditions and expressed early and late female germ cell-specific

genes Vasa, Dazl, Gdf9, Nobox, Zp2, and Zp3. Our data suggest that bovine iPS cells were generated from bovine fetal fibroblasts with defined-factor fusion proteins mediated by lentivirus and have potential applications in bovine transgenic breeding and gene-modified animals.”
“. Background and Objectives: The factor (F) V Leiden mutation causes activated protein C (APC) resistance by decreasing the susceptibility of FVa to APC-mediated inactivation and by impairing the APC-cofactor activity of FV in FVIIIa inactivation. However, APC resistance and the risk of venous thromboembolism (VTE) vary widely among FV Leiden heterozygotes. Common F5 genetic variation probably contributes to this variability. Patients/methods: APC

resistance was determined in 250 FV Leiden heterozygotes and 133 normal relatives using the prothrombinase-based assay, which specifically measures the susceptibility of plasma FVa to APC. The effects of 12 F5 single-nucleotide polymorphisms (SNPs) on the normalized APC sensitivity ratio (nAPCsr) and on FV levels were determined by multiple regression analysis. Results: In FV Leiden heterozygotes, VTE risk increased with increasing nAPCsr, GSK2879552 reaching an odds ratio (OR) of 9.9 (95% confidence interval [CI] 1.280.5) in the highest nAPCsr quartile. The minor alleles of several F5 SNPs, including 327 A/G (Q51Q), 409 G/C (D79H), 2663 A/G (K830R, T2 haplotype), 6533 T/C (M2120T) and 6755 A/G (D2194G, R2 haplotype), increased the nAPCsr in FV Leiden heterozygotes, but not in their normal relatives. Most of these effects could be attributed to a shift in the FVLeiden/normal FV ratio. Four FV Leiden heterozygotes with extremely high nAPCsr turned out to be pseudo-homozygotes, i.e. they carried a deleterious mutation on the non-Leiden allele.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>