Thus, upregulation of FAK signaling in the ILK KO mice after Jo-2

Thus, upregulation of FAK signaling in the ILK KO mice after Jo-2 administration may also be playing an important role in protection against Jo-2 induced apoptosis. Interventional studies will provide a better understanding of the role Selleckchem ABT-888 of FAK signaling in Jo-2 induced apoptosis in absence of ILK signaling. Discussion In this study we show that ILK is plays

a regulatory role in Fas mediated apoptosis. We present evidence that hepatocyte specific ILK KO mice are resistant to Fas-induced apoptosis both in vivo and in vitro. Furthermore we show that apoptotic injury in the ILK KO mice is associated with an increase in antiapoptotic genes like Bcl-xl and Bcl-2. Investigation of the mechanism behind this protection revealed reduced expression of the Fas receptor in the ILK KO mice. However, the lower expression of Fas receptor in the ILK KO mice is not the only mechanism AR-13324 order that could afford that much protection. Thus, we looked at the other possibilities that might also contribute to this protection.

The survival program of ILK is well established and includes primarily activation of PI3K/Akt, ERK1/2 and NFκB pathway [6, 7, 23–25]. In agreement to these studies we found induction of PI3K/Akt, ERK1/2 and NFκB not only after Jo-2 administration but also at basal levels in the ILK KO mice. We then used a well described in the literature in vitro system of studying hepatocyte apoptosis using Jo-2 and Actinomycin D. Pharmacological inhibition of ERK using U0126 and peptide inhibition of NFκB pathway led to increased susceptibility of Cell press ILK KO hepatocytes to Jo-2 induced apoptosis in hepatocyte cultures, suggesting that ERK and NFκB pathways but were the signaling mediators for ILK in this process. Inhibition of Akt using PI3K inhibitor LY-294002 did not learn more affect the degree of apoptosis in ILK KO hepatocytes. Together

the data suggests that reduced expression of FAS receptor in the ILK KO mice along with persistent upregulation of survival signals like ERK1/2 and NFκB signaling is the mechanism behind protection of ILK KO mice against Jo-2 induced liver failure. It should be noted that our results differ to previously published literature where upregulation of ILK in mammary epithelial cells protects against apoptosis [26]. It is conceivable that ILK may be promoting apoptosis in the liver while it has a completely opposite role in the mammary glands. Also, genetic elimination of a protein results in many adaptive changes in the organ. It is likely that genetic removal of ILK from the liver results in adaptive changes in the liver that make them resistant to apoptosis. Liver and mammary gland tissues also have different life cycles. Differentiation of liver tends to be stable through life whereas mammary glands undergo dramatic changes in their differentiation both due to hormonal cycles as well as during pregnancy.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>