“Enzymatically derived NO and extracellular ATP are receiv


“Enzymatically derived NO and extracellular ATP are receiving greater attention due to their role as messengers in the CNS during different physiological and pathological processes. Ionotropic (P2XR) and metabotropic (P2YR) purinergic receptors mediate ATP effects

and are present throughout the body. Particularly P2XR are crucial for brain plasticity mechanisms, and are involved in the pathogenesis of different CNS illnesses. NO does not have a specific receptor and its actions are directly dependent on the production on demand by different nitric oxide synthase isoforms. NO synthesizing enzymes are present virtually in all tissues, and NO influences multifarious physiological and pathological functions. Interestingly, various are the tissue and organs modulated by both ATP and NO, such as the immune, brain and vascular systems. Moreover, direct interactions Dinaciclib order between purinergic and nitrergic mechanisms outside the CNS are well documented, with several studies also indicating

that ATP and NO do participate to the same CNS functions. In the past few years, further experimental evidence check details supported the physiological and pathological relevance of ATP and NO direct interactions in the CNS. The aim of the present review is to provide an account of the available information on the interplay between purinergic and nitrergic systems, focussing on the CNS. The already established relevance of ATP and NO in different pathological processes would predict that the knowledge

of ATP/NO cross-talk mechanisms would support pharmacological approaches toward the development of novel ATP/NO combined pharmacological agents. (C) 2007 Elsevier Ltd. All rights reserved.”
“We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) Sitaxentan that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 x 10(5) and 8 x 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>